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Abstract

The macroscopic pre-cracked line scratch test (MPLST), in which a debonded edge of a film is loaded in in-plane
compression, has been modeled as a generic, coupled fracture-buckle problem using simple beam theory. Near crack-
tip beam rotation (also called root rotation in literature), which always exists due to the eccentric loading in this type of
test, has been incorporated into the governing equations. An analytical solution to the augmented problem has been
derived. It is found that the near-tip rotation can introduce pre-buckle bending in the film. One important consequence
of this pre-buckle bending is that it leads to the reduction of the critical buckling condition. This agrees well with the
results of [Int. J. Fract. 113 (2002) 39] obtained by solving the full elastic field near the crack-tip. Furthermore, the pre-
buckle bending moment at crack-tip remains negative (leading to crack closure) as long as the pre-buckle crack length is
small, but it becomes positive (leading to crack opening) at larger pre-buckle crack length. The negative bending
moment causes the crack-tip energy release rate to decrease as the crack propagates, which results in a stable pre-buckle
crack growth. Once it becomes positive, however, the bending moment causes crack-tip energy release rate to increase
rapidly as crack length increases and hence leads to an unstable (pre-buckle) crack growth. Further, the nominal phase
angle is initially larger than the classic prediction of 52.1° owing to the existence of the negative crack-tip bending
moment, but it drops quickly upon approaching the buckle point. All these results are confirmed by a rigorous 2D FEM
calculation using cohesive zone modeling (CZM) approach. Finally the derived analytical solution has been used to
analyze a set of PLST data reported in the literature. It has been demonstrated that plasticity in the adhesive layer and
in the bonded film is responsible for the strong R-curve toughening characteristics in the deduced interface toughness
data. It has also been shown that, once the deduced interface toughness is incorporated into a CZM simulation, both
the axial loading and buckling point can be accurately predicted.
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1. Introduction

Thin film adhesion to a substrate is one of the key critical design parameters in many high-tech industries
such as micro-electronics and magnetic recording industries. Films that adhere well to the substrate are
always desired. However, how to measure and quantify the adhesion at the film—substrate interface remains
an open research topic. Perhaps the most popular method for thin-film adhesion measurements is the
micro-indentation test (Marshall and Evans, 1984; Rossington et al., 1984) and its variations such as
scratch tests (Benjamin and Weaver, 1960). The common feature of these tests is to promote interfacial
debonding through film buckling using out-of-plane compressive loading techniques (indentation). The
adhesion is then inferred from measurements of the lateral crack extension (at interface) and the inden-
tation volume.

More recently, a new testing scheme named micro-wedge indentation test for thin-film adhesion mea-
surements has been proposed by De Boer and Gerberich (1996a,b). However, it was found that this test
configuration often suffers from film/substrate cracking instead of the desired interface cracking between
the film and substrate. Therefore, a modified scheme called pre-cracked line scratch test (PLST) was
proposed (De Boer et al., 1997). In such a test, a pre-existing interfacial crack was introduced initially and
the film end was then subjected to axial compression, as illustrated in Fig. 1. In this type of tests, typically
two fracture configurations will occur, i.e., a usually stable pre-buckle crack extension, and an unstable
(usually dynamic) post-buckle crack propagation before it is arrested finally. The mechanics for post-buckle
crack propagation and arrest has been extensively studied and is well understood. A general analytical
framework based on classic beam theory has been developed for analyzing these types of tests. A detailed
review of this framework and its applications has been given by Hutchinson and Suo (1992).

Pre-buckle crack growth, however, has received little attention in the literature, most probably because it
is regarded as a simple problem. Applying the above framework to the pre-buckle fracture of bonded beams
yields a simple relationship between crack-tip energy release rate and the applied axial load, given in the
following equation

4 = P*/2Eh, (la)

where P = ok is the in-plane compressive load, and E = E/(1 — v?) is the plane strain modulus. Eq. (1a)
shows that the energy release rate, ¢, is independent of crack length. Furthermore, the phase angle, ¥, in
this particular case is also crack length independent (¥ = 52.1° for a thin beam bonded to a thick rigid
substrate). Therefore, according to this theory, when the in-plane stress reaches a critical value so that ¥
reaches the interfacial joint toughness, I';, crack propagation occurs. As the crack reaches a critical length
given by Eq. (1b), the film buckles
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Fig. 1. Experimental setup for a PLST test specimen.
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Since both ¢ and ¥ are independent of the crack length, once a pre-buckle crack starts to grow, it should
propagate in an unstable fashion. However, this is inconsistent with experimental observations in many
PLST tests (De Boer and Gerberich, 1996a,b). More recently, a macroscopic version of the pre-cracked line
scratch test (PLST) by Volinsky et al. (1999) (Fig. 1) also clearly demonstrated stable crack propagation
with increasing edge loading before the film buckled.

These observations strongly suggest that the classic solution of this problem should be carefully re-
examined. Two key assumptions are associated with the above analysis. One is that the crack length is much
longer than the thickness of the bonded beam, so that simple beam theory applies. The other core
assumption is that the beam section at crack-tip is clamped (zero near-tip rotation). Provided these
assumptions are satisfied, the energy release rate and phase angle can be explicitly expressed by axial force
and bending moment acting at the crack tip. It is seen in Eq. (1a) that there is no bending term, i.e., pre-
buckle bending is neglected. This was not true in Volinsky et al.’s (1999) macroscopic PLST test, where a
considerable amount of pre-buckle bending was observed accompanying stable pre-buckle crack extension.
It is noted that the macroscopic PLST test proposed by Volinsky et al. (1999) is very appealing for thin film
adhesion test because it can explore both the pre-buckle and post-buckle fracture behavior in a single test.
However, the concerns described above need to be addressed before it can be used as a standardized testing
scheme.

One possible explanation is the rotation of the beam near the crack-tip that may occur due to the
existence of a finite-sized fracture zone ahead of the crack-tip and loading eccentricity. This near tip
rotation has also been called root rotation in literature (Kim and Avaras, 1988; Kinlock et al., 1994). It has
been found that the near-tip rotation effects are important to many fracture problems such as double
cantilever beams (DCB) under transverse point loading (Kanninen, 1973; Williams, 1989, 1995). A recent
investigation of near-tip rotation effects by Li et al. (2004) concluded that, while in general it should not be
taken as the origin of correction factor for energy release rate, near-tip rotation does become important if it
causes a sufficiently large change in geometry that affects the appropriate calculation of crack-tip forces and
moments. This could very well be the case for the pre-buckle fracture of a compressed beam shown in Fig.
1. Although the beam is nominally axially loaded, the fact that the applied axial load is balanced by the
interfacial shear stress in the fracture zone ahead of the crack-tip will inevitably introduce some degree of
loading eccentricity, as illustrated in Fig. 2. This loading eccentricity tends to induce near-tip rotation,
which in turn would induce additional bending moment and shear force in the beam. These additional
loads, which are neglected in Eq. (1a), may become important when the axial load is sufficiently large. It is
one of the purposes of this study to examine the effects caused by the near-tip rotation.

In this study, the PLST test configuration will be modeled as a generic coupled fracture-buckle problem
shown in Fig. 2. Near-tip rotation will be introduced into the basic governing equations of beam theory to
allow for pre-buckle bending. Analytical solutions will be derived and the effects of near-tip rotation on
buckling condition, energy release rate and phase angle calculations will be explored in detail. Furthermore,
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Fig. 2. Schematic draw of the problem analyzed. The axial load, bending moment, and shear force point to their positive senses.
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a rigorous 2D FEM analysis using a cohesive zone model (CZM) representing the interface between a
bonded beam and a substrate will be carried out to further validate the augmented beam theory predictions.

2. Equations and solutions

The problem to be solved is illustrated in Fig. 2, where the left end of the compressed beam is clamped,
and the axial compressive load is balanced by the interface shear stress ahead of the crack-tip. The effective
loads depicted in Fig. 2 also define their positive sense. It can be easily shown from a local stress equilibrium
analysis at the crack-tip that the interfacial shear stress introduces local bending that leads to the near-tip
rotation illustrated in Fig. 2. Since the left end is clamped, this tendency of rotation leads to a bending
moment and a transverse shear force acting on the edge, in addition to the applied axial compressive force.
Therefore, the fracture—buckle problem can be described as following (Timoshenko and Gere, 1961)

~ d*u(x) d*o(x)
B~ +P=g 5 =0,
dov(x)
oo = — | =0, 2a
07 dx |, (2a)
do
v(x)|,_,; =0, d(;) . = —,

where v(x) is the deflection function, / is the current crack length, and o is the crack tip rotation angle.
A normalized form of the above equations is

d'r(x) LK d*V(X)

dx e O
dr(x)
VX)|yoo = =0, 2b
X=0 dX Yo ( )
dv
vl =0, T o
X=L

where the normalization is defined as
K>=P*JEI; V(X)=v(x)/h; X =x/h; L=1/h. (2¢)

The solution to Eq. (2b) is

o9 {K(L —X) — KLcos[KX] + KX cos[KL] + sin[KX] + sin[K (L — X)] — sin(KL)}

VX) = K KLsin[KL] 4 2 cos[KL] — 2 (3a)
The bending moment and shear force in the beam as functions of X are
M) = d&*V(X) _ Ku{KL cos[K.X] — sin[KX] — sin[K(L — X)]} ’ (3b)
dx? KLsin[KL] 4+ 2 cos[KL] — 2
3 .
o) = : dV)g() +K dlt/igf) "KL cosflzzo/;l)niK;s/ii)(KL /2)’ (3¢)
respectively.

In the above derivation, the crack tip rotation is included as an “independent” variable to show how
it influences the calculation of crack tip effective forces and bending moment. However, as pointed out by
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Li et al. (2004), it is important to appreciate the crack tip rotation is a combined effect caused by crack-tip
bending moment, M(L), shear force, Q(L), and axial load, K. Dimensional considerations show that the
crack-tip rotation has the following form

_ GuM(L) + GK* + C,0(L) “)
= 12 )

o

where C,,, C,, and C, are functions of elastic constants and geometry. Li et al. (2004) carried out a sys-
tematic investigation using rigorous FEM to determine the three coefficients as functions of elastic con-
stants and geometric parameters. For beams bonded to a rigid substrate, it was found that C,, = 4.5, and
C, >~ C,~2.0 (Li et al., 2004). Note that each of the three values is the smallest possible among all the
materials combinations and geometries.

The crack-tip bending moment and shear force, M (L) and Q(L), can be obtained from Eqgs. (3b) and (3¢)

M(L) = f,,00, (5a)
O(L) = fqo, (5b)
where

K[KL cos(KL) — sin(KL)]
~ KLsin(KL) 4 2cos(KL) — 2’
B K?sin(KL/2)
~ KLcos(KL/2) — 2sin(KL/2)"

S =
(5¢)

Jq

The near-tip rotation angle can therefore be determined by substituting Eq. (5) into Eq. (4), which gives

B C,K>
N 12 - Cmf;n - quq .

The full solution to Eq. (2) is achieved by substituting Eq. (6) into Egs. (3a)-(3c¢).

Now ¢y is uniquely determined by the axial load and crack length. Further, the crack-tip bending
moment and shear force are also known once « is determined. Together with the applied axial load, the
crack tip energy release rate can be computed. For the beam-like geometry shown in Fig. 1, Suo and
Hutchinson (1990) have shown that the crack-tip energy release rate can be calculated from the effective
bending moment and axial force at crack-tip, irrespective to how they vary behind the crack-tip. A good
and insightful example is a double cantilever beam (DCB) under symmetric remote point loading, while the
crack-tip bending moment changes constantly with crack length, the energy release rate can always be
calculated using Eq. (7) (without axial load contribution) with crack-tip bending moment being the product
of the load and the instant crack length. More recently, Li et al. (2004) have also demonstrated that the
same is true for shear force. As will be shown later, shear force has very little contribution to the energy
release rate, compared to the axial compression and bending. Therefore, in the following energy release rate
calculations, only contributions from crack-tip bending moment and axial force are included. The nor-
malized total energy release rate is, according to Suo and Hutchinson (1990)

oo

(6)

_ gn* ML) (K*cosoy)
L)y=———= + .
#(L) EI 2 24 @

One can further partition the energy release rate into nominal modes I and II using the concept of stress
intensity factors (SIF), following Thouless et al. (1987)
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5/2
K= Klgl = \/(K2 cos ) /2 + 6M? cos(w — ),
Kknh®? .
i =~ V(K2cos 40)*/2 + 6M? sin(e — ), ®)

f=tan"! {Z\EM/(KZ cos 0‘0)} ;

where ¥; and %y are the normalized modes I and 11 SIF, and w is the phase factor, which in this case (beams
bonded to a rigid substrate) is 52.1°. Therefore, the phase angle is

Y = tan (" /%) = 0 — B! 9)

3. Results of beam theory with near-tip rotation
3.1. Buckling condition with near-tip rotation

The buckling condition for an axially compressed beam assuming clamped condition at crack-tip (zero
near-tip rotation) is given by Eq. (1b), which in the normalized form is

(KL)yyy = 2m. (10)

This condition can also be derived by setting the denominator of Eq. (3a) to be zero and solving for (KL),
assuming o is a finite constant. However, as shown by Eq. (6), oy itself is a function of axial load and crack
length. Fig. 3 shows crack tip rotation angle (in radians) as a function of crack length for four different
loading levels. It is seen that a is an increasing function of both axial load, K, and crack length, L. More
importantly, for a fixed K, o increases sharply to infinity when L approaches a certain point, indicating that
a buckling condition is reached. At this point, the beam deflection and bending moment also approach
infinity (Eq. (3)).

The buckling point can be found by searching for the smallest root of the following equations (i.e., by
setting the denominator of Eq. (3a) or (3b) to be zero)

KLsin(KL) 4+ 2cos(KL) —2 =0, (I1a)
or
C, KL[KLcos(KL) —sin(KL)] C, (KL)*sin(KL/2)

12+-—2 ——
* L KLsin(KL) 4+ 2cos(KL) —2 L?> KLcos(KL/2) —2sin(KL/2)

=0. (11b)

The solution to Eq. (11a) is Eq. (10). The solution to Eq. (11b), unfortunately, cannot be obtained ana-
lytically. However, it can be readily seen that (KL),,, is no longer independent of crack length. Fig. 4 depicts
the relation between (KL),, and L. The buckling condition without near-tip rotation correction, i.e.,
(KL),,, = 2m, is also shown for comparison. With near-tip rotation correction, (KL),,, is a weakly increasing
function of crack length. The corrected (KL),,, is always smaller than the classic solution of 2z, but
asymptotically approaches 2n when L increases. The deviation from 27 is larger for shorter cracks because
shorter beams require larger Ks to buckle, which in turn induces larger near-tip rotation (Fig. 3).

It is of interest to note that, owing to the existence near-tip rotation, the buckling condition is always
smaller than the Euler buckling condition. The reduction of (KL),,, is small in this study. However, it
should be noted that the near-tip rotation remains small in this study due to the particular loading and
geometry of the PLST configuration (Fig. 2). The near-tip rotation could be much larger for other

! In the calculation of phase angle, the reference length chosen here is the beam thickness, .
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Fig. 3. Crack tip rotation angle (in radians) as functions of crack length for four different loading levels. Dashed line with arrowhead
pointing to the buckling point for each load.

Classic buckling condition ]
(KL), =27

bkl

o

&l
T

L

\

Buckling condition

_ with crack-tip rotation 1

Data points from ]
Yu & Hutchinson (2002)

Critical buckling condition, (KL)

o1

[6)]
—

1

M M M M M M 1 M M M L M M M 1 M M M
0 20 40 60 80 100
Crack length, L

Fig. 4. Buckling condition with near-tip rotation correction compared with the classic prediction assuming clamped condition at crack-
tip. The two data points are from Yu and Hutchinson (2002).

geometries. For example, the near-tip rotation effects may be much greater if the substrate is much more
compliant than the beam. Yu and Hutchinson (2002) recently studied the influence of substrate compliance
on buckling delamination of thin films. They used an integral equation formulation from elasticity to
account for the near tip deformation field (so that any near-tip rotation is implicitly included). They found
that substrate compliance does reduce the critical buckling condition. Even if the substrate is rigid,
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reduction of buckling condition persists due to the 2D near-tip deformation of the bonded beam. Two data
points extracted from that study are shown in Fig. 4. It is very encouraging that the augmented beam
theory with near-tip rotation consideration does an excellent job in capturing the reduction of buckling
condition. A full investigation to determine whether the augmented beam theory can fully account for both
the geometry and the elastic modulus mismatch between substrate and bonded beams/films is under way.

3.2. Pre-buckle bending moment and shear force

Fig. 5 shows the normalized crack-tip bending moment (Fig. 5a) and shear force (Fig. 5b) as functions of
crack length. Fig. 5a shows that for each case, the bending moment at crack initiation (L = 6) is always

Fig. 5. (a) The crack tip bending moment and (b) the shear force, as functions of crack length

the buckling point for each load.
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negative (leads to crack closure). As the crack propagates, the bending moment approaches zero and
eventually becomes positive (leading to crack opening). As will be demonstrated later, the (initial) negative
bending moment is a key element in understanding stable pre-buckle crack growth usually seen in the PLST
test. Once it enters the positive territory, the bending moment increases quickly as crack length further
increases and becomes infinite at the buckling point. The point at which the bending moment changes sign
can be found by searching for the zero point of the numerator in the function f,, of Eq. (5a), that is,
KL cos(KL) — sin(KL) = 0. This gives

KL = 4.49. (12)

It is interesting to note that Eq. (12) is actually the buckling condition for a beam that is clamped at one
end and pinned (free to rotate) at the other. This is one of the two limits that bound the buckling conditions
with near-tip rotation modification. The other limit is given by Eq. (10), which is the buckling condition of
a beam clamped at both ends.

The evolution of the crack-tip bending moment from negative to positive during pre-buckle crack
growth can also be elucidated by the following equation 2

M(L) = M(0) +0(0) - L, (13)

where M(0) and Q(0) are the bending moment and shear force exerted by the clamped end, respectively.
M(0) is positive and must be an increasing function of L because larger L introduces larger beam (pre-
buckle) deflection, which in turn requires a larger bending moment to maintain the rotation-free boundary
condition at the clamped end. The shear force O(L) is a constant throughout the cracked beam (Eq. (3c)).
Furthermore, as shown in Fig. 5b, the shear force is negative and its magnitude decreases as L increases
(except near the very vicinity of buckling point, where the shear force approaches negative infinity due to an
infinitely large near-tip rotation (cf. Eq. (5b)). At small L, the negative Q(0) - L term overcomes the positive
M (0) and hence M (L) is negative. The opposite holds when L becomes sufficiently large.

It is noted that the magnitude of the shear force (Fig. 5b) is always negligibly small compared to the
bending moment (Fig. 5a) or the axial load (K?). Therefore, its direct contribution to the total energy
release rate at crack-tip, (1 4+ v)Q(L)*/5 (with v being the Poisson’s ratio of the beam), must also be small.
This is clear from Fig. 6, which plots the individual contribution to crack-tip energy release rate from axial
load, bending moment, and shear force. The contribution from shear force is indeed negligibly small.
However, this should NOT be misinterpreted as implying that the shear force is not important in the
current study. The shear force is indeed a very important element in the current analysis. First, it affects the
crack-tip energy release rate calculation through the effective crack-tip bending moment (Eq. (13)). Second,
it is needed to satisfy the boundary condition of 7(0) = 0. If the shear force were to be neglected, the
clamped condition would become a (shear) stress-free condition at X = 0, with the Euler buckling condition
(without near-tip rotation correction) (KL),,, = n/2. The solution to that problem (without near-tip
rotation consideration) has been explored by Chiu et al. (1998) to analyze the chipping of brittle materials.

Finally, Fig. 6 also shows that, while the energy release rate from the axial load, (K2 cos x)/24, stays
constant almost up to the buckling point; the bending contribution comes into play much earlier, typically
when about 90% of the buckling condition is reached. Once bending is important, the crack growth be-
comes unstable until it passes through the buckling point, as discussed below.

2 1t can be readily shown that M (L) calculated from Eq. (13) is identical with that obtained from Eq. (3b).
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Fig. 6. Individual contributions to energy release rate from the axial load, pre-buckle bending, and shear force.

3.3. Energy release rate and phase angle

The total energy release rate at the crack-tip is shown in Fig. 7a for four different loading levels. For all
the cases, the crack-tip energy release rate at small crack lengths (when M (L) < 0) decreases as the crack
grows, because the contribution to ¢ from the bending decreases as M (L) — 0 from the negative side (Fig.
6). However, once M (L) becomes positive, the energy release rate increases quickly as the crack length
increases. This is an unstable crack growth condition in a load-controlled test, which may cause difficulty in
identifying the exact buckling point in such a test. The drop of ¢ is more significant at larger K values than
smaller Ks. This indicates that a stronger interface bonding, which requires larger K to propagate the crack,
the negative crack-tip bending moment introduces greater influence on stabilizing the crack growth at
smaller crack length. If the interface bonding is very weak such that only a very small K is needed to
propagate the crack, near-tip rotation is thus small and has little influence on stabilizing the crack prop-
agation. This can be seen from the case of K = 0.3 shown in Fig. 6, which basically recovers Eq. (1) during
the pre-buckle crack growth.

The existence of a pre-buckle bending moment also significantly alters the classic picture of the mode
mixedness calculation. Fig. 7b shows the variation of phase angle as a function of crack length for four
different loading levels. The upper dashed line indicates the classic solution of 52.1°. The phase angles differ
quite dramatically from the classic solution. The phase angle at crack initiation is always larger than 52.1°,
owing to the negative bending moment (Fig. 5a), and drops steadily as crack grows when the bending
moments approaches zero from negative territory. Once passing the turning point given by Eq. (12),
however, (L) drops rapidly with further crack growth because the rapidly increasing positive bending
moment dominates the fracture process (Fig. 6). In the limit of L — Ly, it is seen that M (L) — +oo, and
W (L) — —37.9°, which is the classic solution of crack growth due to pure bending moment (Thouless, 1990).
It is noted here that the near-tip rotation angles associated with the four loading levels in Fig. 7 are given in
Fig. 3. Note the initial pre-buckle rotations are indeed fairly small, far less than 0.1 rad (5.7°), yet they
make significant difference in the energy release rate and phase angle calculations, compared to the classic
beam theory without near-tip rotation correction.
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Fig. 7. (a) Crack tip energy release rate and (b) phase angle for four different axial loading levels. Dashed line with arrowhead pointing
to the buckling point for each load.

Finally, if the joint toughness I'; is known, one can calculate the axial compressive load required to drive
the pre-buckle crack using Eq. (7). Fig. 8 gives the results of such a calculation. At small crack length, an
increasing loading parameter, K, is needed to drive a crack, which indicates a physically stable crack
growth, as observed in the PLST tests. This is a direct effect of negative bending moment that occurs at the
small crack length, because it causes the energy release rate to decrease (Fig. 7a). When the bending mo-
ment becomes positive, however, the required K drops rapidly until the beam buckles.

The decrease of %(L) in Fig. 7a, (or, equivalently, the increase of K(L) in Fig. 8) at smaller L appears not
very sensitive to L—seems not enough to ensure a stable crack growth in a real test. However, it should be
appreciated that the case studied here is a limiting case: an elastic (compliant) beam bonded to an infinitely
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thick and rigid substrate. The crack-tip rotation in the beam is among the smallest possible compared to
other geometry and material combinations (Li et al., 2004). Not surprisingly the results are among the least
deviation from the classic solutions. Nonetheless, one can still see the increasingly stable configuration
(%(L) drops much more and much quicker) as axial loading parameters increases (equivalent to increasingly
large joint toughness in Fig. 8). In general crack-tip rotation angle is a function of the two Dundur’s
parameters (elastic moduli mismatch), the thickness ratio of the two bonded substrates, and the joint
toughness (Li et al., 2004). The near-tip rotation effects are expected to be much more significant for other
geometry and material combinations. A detailed full-scope parameter study of such problems is under way
and will appear elsewhere.

3.4. Implications to macroscopic pre-cracked line scratch test

Egs. (7) and (9) constitute the key of interpreting experimental results from a PLST. In a PLST, typically
the applied load (P) and crack length (/) are recorded as functions of time (e.g., Volinsky et al., 1999). This
can readily be converted to the normalized K—L curve, from which the interface toughness and phase angle
as functions of crack length can be readily computed using these equations. A lot useful information can be
included in such results. Firstly, joint toughness as a function of phase angle can be conveniently obtained
through one single test for a relatively large range of phase angles (). Theoretically (L) approaches 90° as
L decreases to zero, which means the possible range of (L) can be from —37.9° to 90° in a single PLST.
This is the most appealing feature of PLST. Secondly, the calculated joint toughness may contain extra
information such as R-curve toughening effects. R-curve phenomenon usually accompanies the gradual
development of crack-tip plasticity in the beam as crack advances. Any such information will be necessarily
included in the measured K—L curve and will be retained in the calculated joint toughness. *

3 This works only under the condition that the crack-tip plastic zone size is small compared to the beam thickness (small-scale
yielding). Otherwise, the elasticity based beam theory used in this study is violated and one has to seek other means such as cohesive
zone model with elasto-plastic material model for the beam (e.g., Yang and Thouless, 2001) to back out the R-curve toughening effects.
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using Eq. (3) (dashed line).

Fig. 9 gives such an example making use of the data reported in Volinsky et al. (1999). In this test, a
Polycarbonate (PC) film of 100 mm long, 1.7 mm thick and 18 mm wide was bonded to a very thick piece of
steel substrate, by a thin layer (~0.1 mm thick) of cyanoacrylate. The testing rig is illustrated in Fig. 1. The
original data of axial load as a function of crack length was normalized and shown as a KL curve (Egs. (2¢)
and (7)) in Fig. 9a (left-hand Y-axis). Note that in this test the crack front during the initiation stage
(L < 6.8) was not uniform across the film width. The toughness calculation in that region is therefore
inaccurate. Despite that, it is seen that the loading parameter K increased continuously until the onset of
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dynamic crack growth (buckling) occurred when L reached about 11.8, indicating that some degree of R-
curve toughening effect set in during the pre-buckle crack propagation. The computed interface toughness
(I';) as a function of L is also plotted in the same figure (right-hand Y-axis). Note that the R-curve effect
helped to maintain a stable (pre-buckle) crack growth up to the buckling point, because the ever-increasing
interface toughness required the applied K be constantly increased. It is interesting to see that while the K is
a near-linear function of L, I';(L) clearly shows two very distinct stages of L-dependence: in the earlier crack
growth stage (L < 10.88), I';(L) is almost a linear function; however, I'; increases exponentially thereafter
until buckling point is reached.

While the linear L-dependence of I'; can be explained by the plastic zone development confined in the
adhesive (cyanoacrylate) layer, as did in Volinsky et al. (1999), the rapid (nonlinear) increase of I'; in the
second stage defies this explanation because the exponential increase of I'; is accompanied by a level-off of
the applied load (Fig. 9a). A close examination of the stress state in the film reveals that the plastic
deformation in the film near the crack-tip region is responsible for the unusually strong R-curve effect.
According to elasto-plastic theory, plastic deformation in the film will occur when the stress at the outmost
layer (v = h/2) reaches the yield stress of the film, g,. Note that for a compressed film, the total stress is
the sum of axial compression stress, P cos o/h, and bending stress, my/I. It follows that the maximum stress
(compression) is

-(h/2) Pcos
Omax = |m| 1( / )+ A O(a (143)

where |m| is the absolute value of un-normalized crack-tip bending moment. The elastic limit of the film
deformation, om. < 0y, gives the critical bending moment, M _crit, above which plasticity in the film will
occur * (in normalized form)

M crit = 20,/E — K*cos a/6. (14b)

Comparing the crack-tip bending moment, M (L), against the critical bending moment, one can estimate
when the plasticity occurs. Such a comparison is shown in Fig. 9b, where the critical bending moment,
M _crit, and the absolute value of crack-tip bending moment, M_tip, both calculated from the measured
data of Volinsky et al. (1999), are plotted. The yield stress and plane strain modulus of PC were taken to be
60 MPa and 2.5 GPa, respectively. It is immediately seen that M_tip is smaller than M_crit when crack
length L is less than about 10.7, suggesting no plasticity in the film around the crack-tip. However, M_tip
exceeds M_crit in an exponential fashion as L increases further. The turning point of L = 10.7 agrees well
with the observed value from the experimental data, L = 10.88. This clearly demonstrates that plasticity in
the film is responsible for the exponential L-dependence of I'; at the second stage in Fig. 9a.

It has been well recognized that plasticity in bonded substrates can cause significant increase of nominal
interface toughness, or, work-to-fracture (Wei and Hutchinson, 1997; Yang et al., 2000). For example,
Yang et al. (2000) reported an increase of 20 times over the intrinsic mode I joint toughness of a plastically-
deforming 90°-peel joint. In viewing of this, the about threefold of increase in I'; (from 0.0024 to 0.007)
during the second stage in Fig. 9a implies that plasticity in the film is still moderate and this is why the
buckling point has not been significantly altered.

4 For the particular geometry and loading studied in the paper, first yield zone does not occur at the crack-tip (v = —h /2). Rather, it
occurs at the upper stress-free surface (y = #/2) where the maximum compressive stress exists. Therefore it is refer to as “plasticity in
the film” rather than “crack-tip plasticity”.
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4. Numerical confirmation via cohesive zone modeling

The analytical solution derived above is based on simple beam theory that is accurate only for slender
beams with small to moderate lateral deflection. However, in a PLST the pre-crack length may not be
sufficiently long to ensure the accuracy of simple beam theory. Further, the stress/strain field at crack-tip is
a complicated 2D field that could not possibly be fully accounted by any beam theory. The resultant effect
of the crack-tip stress/strain field is taken into account in the derivation in terms of the near-tip rotation of
the bonded beam. It has been demonstrated in Section 3.1 that it does a good job in predicting the
reduction of buckling condition. However, whether it can accurately account for the pre-buckle fracture
process remains to be validated.

In this section, a 2D finite element model was built to simulate the coupled fracture-buckle problem
stated in Fig. 2. The compressed beam has a thickness of 1.7 mm and an elastic modulus of 2.5 GPa. The
rigid substrate is modeled as a fixed boundary line. A cohesive zone model was used to mimic the fracture
zone between the beam and the substrate. The CZM employs a mode-independent cohesive law similar to
that used by Yang and Thouless (2001). A detailed description of the CZM is given in Appendix A. The
parameters for the cohesive law are given in the inset of Fig. 10b. The FEM model includes 15,000 4-node,
4500 3-node plane strain elements, and 2000 cohesive zone elements. It took about 1 h of CPU time (HP C-
3600 unix workstation) before the calculation was stopped due to divergence, indicating the buckling
condition was reached.

Fig. 10a summarizes the results of the CZM modeling. It shows the deflection profiles and the axial
stresses (a1;) at three different stages (displacements magnified by 10 times): (1) near crack initiation; (2) at
an intermediate stage when the crack-tip bending moment is near zero; and (3) immediately before buckling
(buckling point was taken when the simulation failed to converge). The crack-tip bending moment can be
obtained from the axial stress distribution along the beam cross-section at crack-tip by

M(L) = - / (L) — an(L)]ydy, (15)

where a1, (L) :% f(f o11(L,y)dy is the average stress at the cross-section. The axial stress field at the crack
tips of the three stages shows a transition from a negative bending moment in Fig. 10a_1 (M (L) ~ —0.007)
to a small positive moment in Fig. 10a_2 (M (L) ~ +0.031), and to a large positive bending moment in Fig.
10a_3 (M (L) ~ +0.090). This verifies the beam theory prediction at least qualitatively.

The required loading parameter and phase angle as functions of crack length predicted by CZM are
shown in Fig. 10b. The corresponding beam theory predictions are included for comparison. The analytical
solution captures the essence of CZM results very well, especially the crack length dependence of the ap-
plied load and the rapid drop in phase angle as the crack propagates. It is rather satisfactory to see that the
loading parameter (K) predicted by the augmented beam theory with near-tip rotation is only 8% lower
than that predicted by 2D CZM calculation.

Noted that although the phase angles predicted by the beam theory are very close to CZM predicted
values, they should not be compared directly. In beam theory, the calculation of phase angle depends upon
a reference length scale, which could be chosen rather arbitrarily (beam thickness, %, is used in Eq. (9)).
However, a simple transformation rule exists between different choices of the reference length (Hutchinson
and Suo, 1992). In the CZM modeling, the phase angle was calculated from fracture energies associated
from the modes I and II fracture processes as defined in Appendix A. This calculation involves a natural
length scale—the fracture zone size. Perhaps due to serendipity, the CZM parameters used in this study
yielded a fracture zone of a size comparable to the beam thickness (simple estimation from shear lag
analysis showed that the CZM fracture zone for this case is 3.5 mm, or, about twice the beam thickness).
This is why the two sets of phase angles are so close. Had the fracture zone been much different from the
beam thickness, a simple transformation would be noted between the phase angle lines in Fig. 10b.
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Fig. 10. (a) Axial stress states predicted by CZM at three different pre-buckle crack growth stages, showing crack-tip bending moment
evolves from a negative value (a_l) at initiation, to a near zero value at an intermediate stage (a_2), and finally to a positive value
immediately before buckle (a_3). Displacements are magnified by a factor of 10. Also shown is the fracture zone size (shear zone size)
for the CZM simulation. (b) The CZM predicted loading parameter (K) and phase angle () as functions of crack length (L), compared
to the corresponding analytical results (dashed lines).

Finally, for completeness purpose, the deduced interface toughness with R-curve effect included (Fig. 9a)
was incorporated into a modified cohesive law (mode-independent) to simulate the PLST described in
Volinsky et al. (1999). The modified cohesive law has constant cohesive strengths (¢ = 60 MPa and 7T = 30
MPa), but the fitted curve of the deduced toughness data (dashed line in Fig. 9a) is taken as the toughness
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of the CZ elements. Thus each CZ element has a location-dependent toughness, mimicking the R-curve
effect. The fitted curve is represented as

o [20 X107 £44 < 1074(L - 5.88) (5.88 < L<10.88),
"7 1242 x 1073 + 1.67 x 10~*sinh[(L — 10.88)/0.22] (10.88 < L < 11.76).

It is of interest to see if such a simulation can reproduce the experimentally measured load—crack length
data. The computed loading parameter (K—Ileft-hand Y-axis) is superimposed on Fig. 9a (solid line) as a
direct comparison to the measured data. Not surprisingly, the simulated K replicates the experimental curve
quite accurately—not only the predicted K(L) is sufficiently close to experimental curve, but also the
buckling point is captured quite accurately.

5. Conclusions

In this study, the macroscopic pre-cracked line scratch test (MPLST) has been modeled as a generic,
coupled fracture-buckle problem using simple beam theory. Near crack-tip beam rotation (also called root
rotation in literature), which always exists due to the eccentric loading in this type of test, has been
incorporated into the governing equations. An analytical solution to the augmented problem has been
derived. It is found that the near-tip rotation can introduce pre-buckle bending in the film. One important
consequence of this pre-buckle bending is that it leads to the reduction of critical buckling condition. This
agrees well with the results of Yu and Hutchinson (2002) obtained by solving the full elastic field near the
crack-tip. Furthermore, it is found that the pre-buckle bending moment at the crack-tip is always negative
(leading to crack closure) when the pre-buckle crack length is small, but it becomes positive (leading to
crack opening) at larger pre-buckle crack length. The negative bending moment causes the crack-tip energy
release rate to decrease as the crack propagates, which results in a stable pre-buckle crack growth. Once it
becomes positive, however, the bending moment causes crack-tip energy release rate to increases rapidly as
crack length increases and hence leads to an unstable (pre-buckle) crack growth. Furthermore, the nominal
phase angle is initially larger than the classic prediction of 52.1° owing to the existence of the negative
crack-tip bending moment, but it drops quickly upon approaching the buckle point. All these results are
confirmed by a rigorous 2D FEM calculation using a cohesive zone model. Further, the derived analytical
solution has been used to analyze a set of PLST data. Interface toughness as a function of crack length has
been deduced from the experimental data, which showed strong R-curve effects. Plasticity in the adhesive
layer and in the bonded film was found to be responsible for the strong R-curve characteristics. The deduced
interface toughness has also been incorporated into a modified cohesive zone model and excellent agree-
ment has been obtained between the CZM predicted and experimentally measured axial load. The CZM
also accurately predicted the buckling point of the PLST specimen.
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Appendix A. A mode-independent cohesive zone model

The mode-independent cohesive law used in this study is a special case of the mixed-mode CZM first
used by Yang and Thouless (2001). The model assumes unrelated traction—separation laws for opening and
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shear deformation. This is usually appropriate because frequently the modes I and II fracture are due to
different failure mechanisms for adhesively bonded structures, and hence, have different traction separation
laws. The total traction—separation work absorbed during fracture (frature energy), ¢, is the sum of the
opening (mode I) and shear (mode II) components, %; and %y

G =G+ 9. (A.1)

The two separate components can be calculated by integration of the modes I and II traction—separation
curves (Fig. 11)

on d¢
g] = / J(én)dén, {4[[ = / ’E(é[) dét, (AZ)
0 0

where J, and J, denote the normal and tangential displacements. These are not independent parameters;
they evolve together as a natural result of the interplay between the deformation of the adherends and the
details of the two traction—separation laws. A failure criterion is required to determine the critical values of
the two components of ¢, 4; and %;;, at which separation of the CZM elements occurs. The criterion used
in this study is a simple one (Wang and Suo, 1990; Hutchinson and Suo, 1992)

G /To+ 9y /To = 1, (A.3)

where I'y, and Iy, are the total areas under the opening and shear traction—separation laws, or, the modes |
and II fracture toughnesses, respectively.
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In such a mixed-mode fracture process, ¥; and %y evolve independently as the opening and shear
displacements in the cohesive zone develop in response to the applied loads. Once the failure criterion of
Eq. (A.3) is met, the normal and shear tractions across the crack plane are assumed to drop to zero
instantaneously, and the crack advances. It is seen that the mode-mixedness does not need to be determined
specifically in this scheme. Rather, it is an outcome of the numerical calculations, and is dependent on the
fracture criteria and traction-separation laws. However, it is often convenient to be able to define it for
purposes of comparison. The phase angle is therefore defined as

g* 1/2
¥ = tan™ ((;}}) . (A.4)

This definition is consistency with the standard definition of the phase angle using applied stress-intensity
factors (Hutchinson and Suo, 1992).

The mode-independent CZM used in this study is obtained by setting modes I and II fracture tough-
nesses to be identical, i.e., I';, = I't,. The shape parameters (4; and 4,), which are of only secondary
importance, are also set to be identical. However, the peak normal (6) and shear stresses (7) can be different.
So do the critical separation displacements for mode I (;) and mode II (J).
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